❓
Understanding Causal Inference
  • A Guide to Causal Inference
  • Table of Contents
  • About-us
  • Preface
  • What is Causality?
  • Why bother with Causality?
  • Origin of Causality
  • Statistical Inference Vs Causal Inference
  • Decision-Making
  • Why we need Causality?
    • Leaders in the Industry
  • Key Causal Terms and FAQ
  • Assumptions
    • Causal Assumptions
  • Bias
    • Selection Bias
    • Correlation is not Causation
      • Simpsons Paradox
  • Causal Graphs
    • Colliders
    • Confounders
    • Mediators
    • Back Door Paths
    • Front Door Paths
    • Structural Causal Model
    • do-calculus
    • Graph Theory
    • Build your DAG
    • Testable Implications
    • Limitations of Causal Graphs
  • Counterfactuals
    • Potential Outcomes Framework
  • Modeling for Causal Inference
    • Experimental Data
      • Randomization
        • Problems with Randomization
        • A/B Testing
          • Experiment
    • Non-Experimental / Observational Data
      • Instrumental Variables
      • Weighting
        • Inverse Propensity Weighting
      • Propensity Score
      • Sensitivity Analysis
      • Regression Discontinuity
      • Matching
      • Stratification
        • Methods
        • Implications
  • Tools and Libraries
    • DoWhy
      • Do-Sampler
      • EconML
      • Workflow
    • Causal Graphical Models
    • CausalInference
    • Dagitty
    • Other Libraries
  • Limitations of Causal Inference
    • Fundamental Problem of Causal Inference
  • Real-World Implementations
  • What's Next
  • References
Powered by GitBook
On this page

Was this helpful?

  1. Tools and Libraries
  2. DoWhy

EconML

PreviousDo-SamplerNextWorkflow

Last updated 4 years ago

Was this helpful?

is a Python package that applies the power of machine learning techniques to estimate individualized causal responses from observational or experimental data. The suite of estimation methods provided in EconML represents the latest advances in causal machine learning. By incorporating individual machine learning steps into interpretable causal models, these methods improve the reliability of what-if predictions and make causal analysis quicker and easier for a broad set of users. It allows users to easily select the best model for their questions and implement them.

The use-cases of this library are:

  1. A/B testing: Interpret experiments with imperfect compliance

  2. Customer Segmentation: Estimate individualized responses to incentives

  3. Multi Investment Attribution: Distinguish the effects of multiple outreach efforts

Resource: __

EconML
Github