❓
Understanding Causal Inference
  • A Guide to Causal Inference
  • Table of Contents
  • About-us
  • Preface
  • What is Causality?
  • Why bother with Causality?
  • Origin of Causality
  • Statistical Inference Vs Causal Inference
  • Decision-Making
  • Why we need Causality?
    • Leaders in the Industry
  • Key Causal Terms and FAQ
  • Assumptions
    • Causal Assumptions
  • Bias
    • Selection Bias
    • Correlation is not Causation
      • Simpsons Paradox
  • Causal Graphs
    • Colliders
    • Confounders
    • Mediators
    • Back Door Paths
    • Front Door Paths
    • Structural Causal Model
    • do-calculus
    • Graph Theory
    • Build your DAG
    • Testable Implications
    • Limitations of Causal Graphs
  • Counterfactuals
    • Potential Outcomes Framework
  • Modeling for Causal Inference
    • Experimental Data
      • Randomization
        • Problems with Randomization
        • A/B Testing
          • Experiment
    • Non-Experimental / Observational Data
      • Instrumental Variables
      • Weighting
        • Inverse Propensity Weighting
      • Propensity Score
      • Sensitivity Analysis
      • Regression Discontinuity
      • Matching
      • Stratification
        • Methods
        • Implications
  • Tools and Libraries
    • DoWhy
      • Do-Sampler
      • EconML
      • Workflow
    • Causal Graphical Models
    • CausalInference
    • Dagitty
    • Other Libraries
  • Limitations of Causal Inference
    • Fundamental Problem of Causal Inference
  • Real-World Implementations
  • What's Next
  • References
Powered by GitBook
On this page

Was this helpful?

  1. Modeling for Causal Inference
  2. Non-Experimental / Observational Data
  3. Stratification

Methods

The good part about stratification is that there it is easy and in fact, there are a lot of libraries to do so.

  1. library - Sklearn

sklearn.model_selection_train_test_split( stratify = data["variable"] )
PreviousStratificationNextImplications

Last updated 4 years ago

Was this helpful?