❓
Understanding Causal Inference
  • A Guide to Causal Inference
  • Table of Contents
  • About-us
  • Preface
  • What is Causality?
  • Why bother with Causality?
  • Origin of Causality
  • Statistical Inference Vs Causal Inference
  • Decision-Making
  • Why we need Causality?
    • Leaders in the Industry
  • Key Causal Terms and FAQ
  • Assumptions
    • Causal Assumptions
  • Bias
    • Selection Bias
    • Correlation is not Causation
      • Simpsons Paradox
  • Causal Graphs
    • Colliders
    • Confounders
    • Mediators
    • Back Door Paths
    • Front Door Paths
    • Structural Causal Model
    • do-calculus
    • Graph Theory
    • Build your DAG
    • Testable Implications
    • Limitations of Causal Graphs
  • Counterfactuals
    • Potential Outcomes Framework
  • Modeling for Causal Inference
    • Experimental Data
      • Randomization
        • Problems with Randomization
        • A/B Testing
          • Experiment
    • Non-Experimental / Observational Data
      • Instrumental Variables
      • Weighting
        • Inverse Propensity Weighting
      • Propensity Score
      • Sensitivity Analysis
      • Regression Discontinuity
      • Matching
      • Stratification
        • Methods
        • Implications
  • Tools and Libraries
    • DoWhy
      • Do-Sampler
      • EconML
      • Workflow
    • Causal Graphical Models
    • CausalInference
    • Dagitty
    • Other Libraries
  • Limitations of Causal Inference
    • Fundamental Problem of Causal Inference
  • Real-World Implementations
  • What's Next
  • References
Powered by GitBook
On this page

Was this helpful?

Tools and Libraries

For the effective and faster implementation of Causal Inference on a larger scale, there are some libraries built, which are ready for implementation. Most of these libraries are for R and Python. We will try to understand and explore how to implement some of these libraries for causal inference.

  • Why do we need Libraries for Causal Inference?

To understand and detect the causal relationship we have a lot of assumptions in our model, which we need to check. In such a case, we have to repeat some very common steps. Ensuring the validity of our assumptions and testing them is very essential in causal inference. These Libraries help us with these repeated steps of testing and make it faster.

PreviousImplicationsNextDoWhy

Last updated 4 years ago

Was this helpful?